# Chebyshev Approximation by Products 

Charles B. Dunham<br>Computer Science Department, University of Western Ontario, London, Ontario, Canada N6A 5B7<br>Communicated by G. Meinardus

Received September 20, 1982


#### Abstract

Characterization and uniqueness of minimax approximation by the product $P Q$ of two finite dimensional subspaces $P$ and $Q$ is studied. Some approximants may have no standard characterization since $P Q$ may not be a sun, but interior points do have the standard linear characterization. © 1985 Academic Press, Inc.


The problem of Chebyshev best approximation by products of finite dimensional linear subspaces has been raised by several people. Boehm [1], in work prior to 1964, studied existence of a best approximation. Cheney [4, p. 109], in 1965, raised the question of whether a theory similar to that for generalized rational functions could be obtained. Gislason [6] in 1970 corrected Boehm and promised work on characterization of best approximations. In this paper we study characterization and uniqueness of best approximations.

The simplest non-trivial family of products is the set $\mathscr{G}$ of all functions of the form

$$
(a x+b)(c x+d),
$$

(all coefficients real). Let us consider approximation of $f(x)=2 x^{2}+1$ on $[-1,1]$. We claim that 2 is a best approximation. As the deviation $f-2$ has extrema on $[-1,1]$ at and only at $\{-1,0,1\}$, a better approximation $p$ would satisfy

$$
\begin{aligned}
p(-1) & >2 \\
p(0) & <2 \\
p(1) & >2 .
\end{aligned}
$$

If $p$ had zeros in $[-1,1]$, we would have $\|f-p\| \geqq 1$ since $f \geqq 1$, so such $p$ cannot be better. If $p$ had no zeros in $[-1,1], p$ would not be a product. Hence better $p$ does not exist and 2 is best. By drawing a diagram it is seen
that $\left\|f-3 x^{2}\right\|=1$ (indeed, this is true for other multiples of $x^{2}$ ), so $f$ does not have a unique best approximation. We have

$$
\left(f-3 x^{2}\right)\left(2-3 x^{2}\right)>0
$$

on the (only) extremum of $f-3 x^{2}$ in $[-1,1]$, namely 0 . It follows that the Kolmogorov characterization of best approximations ( $=$ extremum characterizable of the author [ 5, p. 375]) does not hold. It follows that $\mathscr{G}$ does not have the closed-sign property [5, p. 375] ( $=$ regularity of Brosowski [3]), hence $\mathscr{G}$ is not a sun [2, p. 262]. It follows from results of the author [5, pp. 377-378] that locally best approximations can exist which are not globally best-but this can be verified directly by considering approximation of $f_{k}(x)=2 x^{2}+1+1 / k$. Also in the example the set of best approximations is not connected (compare Braess [2, p. 272]).

Nevertheless, it is possible to obtain a characterization and uniqueness result for some elements of a family $P Q$ of products. Let $R$ be a linear space containing all elements $p q$ of $P Q$.

Definition. $p q$ is an interior point if all elements in a neighbourhood of $p q$ in $R$ are also in $P Q$.

Theorem 1. Let $p q$ be an interior point. $p q$ is best in $P Q$ if and only if $p q$ is best in $R$.

Proof. As $P Q \subset R$, sufficiency is automatic. For necessity, observe that the linear proof of necessity says that if $p q$ is not best, there is a better element in any neighbourhood of $p q$.

We can thus use the standard linear theory. In particular we have for approximation by $\mathscr{G}$ that $R$ is the set of polynomials of degree 2 , hence

Theorem 2. Let $g(x)=(a x+b)(c x+d)$ be an interior point. It is best to $f$ if and only if $f-g$ alternates three times. It is unique if best.

By the quadratic formula and continuity it is clear that all polynomials of degree 2 with two distinct zeros are interior points. A polynomial with exactly one real simple root is an interior point since nearby $p$ have a real root nearby, hence no imaginary root. Conversely, constants and polynomials with a double zero are not interior points since they can be perturbed into a polynomial which is not a product.

It should be noted that Theorem 1 applies to mean ( $L_{p}$ ) approximation as well.

Approximation by products of generalized rational functions (with denominators $>0$ ) is also of interest. The analogue of interior point and Theorem 1 is obvious.

## References

1. B. W. Bоенм, Existence of best rational Tchebycheff approximations, Pacific J. Math. 15 (1965), 19-27.
2. D. Braess, Geometrical characterizations for nonlinear uniform approximation, J. Approx. Theory 11 (1974), 260-274.
3. B. Brosowski, "Nicht-lineare Tschebyscheff-approximation," Bibliographisches Institut, Mannheim, 1968.
4. E. W. Cheney, Approximation by generalized rational functions, in "Approximation of Functions" (H. L. Garabedian, Ed.), pp. 101-110, Elsevier, Amsterdam, 1965.
5. C. B. Dunham, Characterizability and uniqueness in real Chebyshev approximation, J. Approx. Theory 2 (1969), 374-383.
6. G. A. Gislason, On the existence question for a family of products, Pacific J. Math. 34 (1970), 385-388.
